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Computational Aspects of Cyclic Optimization

Project Description

This project investigates the computational underpinnings of cyclic optimization. Whereas the other
projects aim to break new empirical ground, studying in depth if and how cyclic optimization can apply to
certain empirical domains, this project attempts to understand the nature of cyclic optmization itself. The
goals of this project are to determine the kinds of phenomena describable (or not) by cyclic optimization,
to understand how cyclic optimization relates to other mechanisms for grammatical description, and to
clarify the nature of the mechansims involved. The hope is that this will go hand in hand with the projects
aiming to better understand the way cyclic optimization works in the context of natural language, with
this project providing guidance for the proper implementation of theoretical ideas, and the other projects
guiding this one with respect to the proper notion of cyclic optimization to formalise.

1. State of the art and preliminary work

The methods of theoretical linguistics are aimed at uncovering regularities in the mapping between
linguistic form and meaning. Such regularities can be expressed in a multitude of ways, ranging from
logical statements of well-formedness to generative procedures.

Given that we are studying properties of the brain, there is a priori reason to be skeptical that nota-
tional decisions are reflected in the actual brain-representation of the higher order linguistic regularities
linguists study. We already recognize this fact, and do not attach any importance to notational decisions
such as the length of edges in autosegmental representations, or the font used to write syntactic node
labels, or even the names of syntactic node labels (deciding to shift node names one alphabet symbol
down, AP becomes BP, CP becomes DP, DP becomes EP, . . . , PP becomes QP, VP becomes WP).
Such things do not matter for the claims we intend our theories to be making, although we are forced
to make some decision on these matters when presenting our theories. In these cases it is clear, but
it can be difficult to distinguish between properties intrinsic to the phenomenon being investigated and
accidental properties due to the notation or manner of its description.

Computational linguistics is able to help address this issue by proving (in-)equivalencies between
different systems of notation. This allows us to identify the essential properties of phenomena as those
which are preserved under notational changes. This perspective has been very successful, establishing
(exceptionless) universal properties of language; that phonological patterns are (sub-)regular, and that
syntactic ones are mildly context-sensitive [Heinz and Idsardi, 2013].

The discovery of bounds on the complexity of phonology and syntax allow us to categorize the fit to
the typological data of linguistic grammar formalisms. If a syntactic grammar formalism goes beyond
the mildly context-sensitive upper bound, we know that it generates not just things that we have never
seen, but things that we have never seen that are more complex than anything we have ever seen. On
the other hand, if our theory of grammar is too weak to generate mildly context-sensitive patterns, then
we know that it cannot describe the full range of constructions in natural language.

In addition, these computationally real bounds on natural language provide guidance when devel-
oping theories which link the high level regularities in form and meaning discovered by linguists to its
real-time implementation in performance systems, as in parsing.

When new theoretical frameworks emerge, it is important to determine what it means for a linguistic
phenomenon to be describable in terms of a framework. In the context of the broader project, we can
ask whether cyclic optimization is an essential property of natural language, or is it merely a notational
device for describing a kind of pattern that could be described in other ways? If the latter, is there some
class of patterns for which cyclic optimization provides a particularly succinct characterization? We
thus in this project aim to directly address the hypothesis of the research unit that combining cyclicity
and optimization achieves an added level of explanation not available to either alone.

Much work on optimization has been done in the computational linguistic world (beginning with Frank
and Satta [1998], Karttunen [1998] and culminating with Riggle [2004]), which has shown in increas-
ingly sophisticated and faithful ways how to view optimality theory as a simple regular relation between
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inputs and outputs. This demonstrates that aspects of optimization can actually be implemented with-
out making reference to competitors at all. These works underscore the fact that (given certain formal
conditions) the effects of optimization can be had without the mechanism of optimization. When these
conditions are not met, having optimization is indeed more powerful than not having it - however, the
patterns requiring the mechanism of optimization are unattested [Riggle, 2004, Heinz, 2018]; they in-
clude what phonologists have called pathological languages like "sour grapes" [Padgett, 1995] and
"majority rule" [Bakovič, 2000].

As optimality theory is a framework for evaluating the interaction of ranked, violable constraints, it is
in principle compatible with constraints of any formal power at all, including computationally completely
intractable ones. If we want an explanatory theory (or one that could even in principle be realized in a
finite computational device, such as the brain), we must therefore restrict the power of the constraints
that can be used. In the simple syllable theory of Prince and Smolensky [2004], constraints have a very
local character: don’t add segments, don’t delete segments, have onsets, and don’t have codas. The
’local character’ of these constraints can be operationalized by a formal implementation as weighted
finite state transducers, mapping inputs to outputs paired with the number of constraint violations in-
curred. As noted by Ellison [1994], multiple individual finite state constraints can be ranked with respect
to one another by transducer intersection, which combines multiple constraints into a single weighted
transducer, whose weights are constraint violation vectors. Each path in this transducer corresponds
to a candidate with its violation vector in a tableau. An optimal candidate corresponds to a path with a
smallest violation vector. Finding such a candidate can be done via a standard shortest path algorithm.
The crucial insight behind this approach is that: by using a representation (a finite state transducer)
which compactly represents an infinite tableau, operations like optimization can be implemented (and
efficiently).

On the syntactic side, Kepser and Mönnich [2006] show that, given similar conditions, optimality the-
ory over trees can be implemented without making reference to competitors (i.e. as a finite state tree
transduction). Graf [2013] has used this technique to demonstrate that transderivational constraints
over minimalist grammar derivations are implementable without making reference to alternative deriva-
tions. As shown by [Graf, 2011, Kobele, 2011], arbitrary finite state filters on both derivations and
derived trees can be encoded in the minimalist feature calculus. As a simple example, the effects of
a complexity filter [Koopman, 2002] prohibiting a complex possessor in German (stating roughly that
a SPEC-DP in German cannot contain a DP with an overt SPEC) can be achieved by modifying the
categories of our grammar, splitting the monolithic and undifferentiated D feature into a De feature (rep-
resenting a silent DP), a D0 feature (representing an overt DP without an overt SPEC), a D1 feature
(representing an overt DP with a D0 SPEC) and a D∗ feature (representing an overt DP with a D1 or
higher SPEC). (We also need to differentiate categorially between overt and silent N and A heads.)
These formal features are imbued with meaning by constraining their checking potential - a D0 allows
only a De to move to its specifier, a D1 requires a D0 to move to its specifier, and a D∗ requires a D1 or
a D∗ in its specifier.

Despite optimization being well-studied in computational linguistics, next to nothing has been done in
terms of cyclic optimization: cyclicity is itself a computationally very understudied mechanism [Dolatian,
2020, Sproat, 1992]. Intuitively, cyclicity involves repeatedly applying the rules of the (say, phonological)
grammar at various points in a (separate, say, syntactic or morphological) structure building process.
(Peters and Ritchie [1973] prove that cyclic rule application in transformational syntax is responsible for
its overwhelming generative capacity. This conception of the cycle is unified with the structure building
one in the next section.) Sproat (pg 107), in the context of morpho-phonology, asserts that "cyclic
rules are intimately intertwined with the process of word building." What makes this computationally
problematic is that the grammatical output is the result not of applying the rules of the grammar to an
input form, but of applying them over and over and over again. While it is understood how to apply
a grammar once (or more generally some fixed finite number of times), with cyclicity one needn’t be
able to bound in advance the number of times a grammar might need to be applied to obtain a final
output. The fundamental work of Kaplan and Kay on the formal power of phonological rule systems
[Kaplan and Kay, 1994] explicitly restricts attention to non-cyclic rule application. They observe that
individual contextual rewriting rules are regular relations. They note that while sequential and disjunctive
combination of rule (blocks) preserves regularity, cyclic combination does not (and propose on these
grounds to exclude it from consideration). While cyclic rule application was excluded from Kaplan and
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Kay’s study, the actual condition on the well-behavedness of phonological rules they adopted was more
general; they required that no rule would be able to reapply to its own output. (Cyclicity would then
be permitted, so long as the outputs of previous cycles were inviolable.) The earlier work by Johnson
[1972] was the first to note that phonological rules as used in generative phonology were regular, and
that iterative rule application did not, whereas simultaneous rule application did, preserve regularity.
The crucial difference between simultaneous and iterative rule application schemes being, of course,
that of rules reapplying to their own outputs. Yli-Jyrä [2019] notes that this is not an all-or-nothing
property, and that certain instances of reapplication can in fact be dealt with in regular ways. He
appeals to (old!) work in the theoretical computer science literature, observing that single tape turing
machines working in linear time are regular. He shows how to leverage this result in the context of a
formalism for inflecting and deriving word-forms (the hunspell formalism), which allows for (a limited
form of) iterative rule application.

In an iterative setting, the grammar must reapply to its own output until some condition is met (usu-
ally: reaching a fixed point). What makes this fall short of cyclicity proper is that there is no structure
creation being interleaved with (re)applying the grammar. This is exactly what is argued for by Mc-
Carthy [2010], in his ’serial’ version of optimality theory, ’harmonic serialism’. Viewing a grammar as
a relation (from inputs to outputs), reapplying the grammar to its own output can be modeled via the
composition of this relation with itself. The n-fold application of a grammar to its outputs is then n-fold
self-composition. In an iterative setting, the grammar might need to apply once to some inputs, twice
to others, and so on, without an upper bound. This can be modeled by taking the (reflexive) transi-
tive closure of the grammar, which is however known not to preserve regularity. The field of software
verification (regular model checking) has encountered just this problem, and has explored conditions
under which the reflexive transitive closure of regular relations remains regular [Nilsson, 2005]. Building
on this literature, Hao [2017] has recently shown that (under certain assumptions) harmonic serialism
over strings only allows for the description of regular relations. In order to make direct use of the theo-
rems from the software verification literature, which require that input and output strings be of the same
length, severe representational restrictions must be imposed, in particular that deletions and insertions
are disallowed as such. Instead, each input is viewed as containing some number of ’empty’ segments;
insertion is construed as changing an empty segment to a non-empty one, and deletion is changing a
non-empty segment to an empty one. (This purely formal move has parallels in the linguistic literature;
the PARSE/FILL model of Prince and Smolensky [2004] has empty positions reserved for epenthesis,
and deleted segments are still present in the output. Similarly, government phonology [Kaye et al.,
1990] makes judicious use of empty positions in words.) Thus the relation computed by Hao’s transitive
closure of optimization steps is between words with a certain number of empty segments. The word
dog would correspond to infinitely many distinct inputs (dog, Edog, EEdog,. . . ,/dEog,/dEEog/,. . . ; here
E is an empty segment), each of which is mapped to its own output - these outputs needn’t correspond
to the same word, however! The awkwardness of empty segments is cleverly solved by Hao by a
pre- and post-processing stage which non-deterministically inserts, and then deterministically deletes,
these empty segments. The resulting non-deterministic transducer maps input strings (like dog) non-
deterministically to padded input strings (like EdEogEE), which then get mapped non-deterministically
to some number of optimization steps (perhaps 17, yielding ddEEEdd), and then get mapped deter-
ministically to unpadded strings (like dddd). This does not yet have the fixed-point condition in place
- given an input, we obtain all outputs which result from any number of optimization steps on some
padded version of the input. We want however just those outputs which are the fixed points of optimiza-
tion. Hao is able to show that in his setting, this can be represented as a finite state filter, the addition
of which to the process preserves regularity. This is an a priori unexpected result, which is due to the
simplicity of the constraints used: making no change is optimal whenever the input does not have any
of a finite number of banned subsequences! The end result is a non-deterministic transducer mapping
an input (dog) to the set of fixed points for each way of padding it out with empty segments. This
single machine makes no use of optimization (iterated or otherwise), thereby demonstrating that even
the effects of iterated optimization are achievable via more mundane means, in addition to proving that
the input-output relations computed by Hao’s version of harmonic serialism belong to a formally very
restrictive class, thus (apparently correctly) predicting the typological absence of more computationally
complex patterns.

While the formal study of iterativity (either in terms of optimization or rule application) is still in its
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infancy, there is as we have seen some promising prior work demonstrating islands of tractability of
relevance to linguistics. Cyclicity is related to iterativity, in that the grammar is applied over and over
again, but differs from it in that the reapplication of the grammar is determined by intermediate structure
building steps.

Although it is natural to think of derivations as dynamic procedures, it has proven very useful to view
the derivational process itself as a structure, typically a tree. This allows for the regularities in the
derivational process to be investigated independently of the properties of the object the derivational
process is constructing. This view is explicit in categorial grammar [Steedman, 2000], and is promi-
nent in the tree-adjoining literature as well [Joshi and Schabes, 1997]. While less well-known in the
linguistic literature on minimalism, this perspective is of fundamental importance here as well [Kobele
et al., 2007]. A syntactic derivation proceeds by applying syntactic operations to syntactic expressions,
which are themselves either lexical items, or previously derived objects. In the context of minimalist
grammars, the syntactic operations are merge and move (or internal merge). A simplified derivation of
the intransitive sentence every sheep will bleat might proceed as follows.

1. select every from the lexicon

2. select sheep from the lexicon

3. merge 1 and 2 (to form every sheep)

4. select bleat from the lexicon

5. merge 4 and 3 (to form the VP [bleat [every sheep]])

6. select will from the lexicon

7. merge 6 and 5 (to form the TP [will [bleat [every sheep]]])

8. move every sheep in 7

This characterization of a derivation as a list of numbered steps is reminiscient of a Hilbert style logic
proof. In proof theory, many different representations of proofs have been studied, each of which
foregrounds different aspects of the ’structure’ of the proof. The derivation above can be presented as
the structured object in figure 1 which represents the steps of the derivation above in a tree-like form
that is congenial to linguists (and to computer scientists). In this structure, sisters are coarguments to

move

merge

will merge

bleat merge

every sheep

Figure 1: A derivation tree for every sheep will bleat

the operation their mothers are labeled with, and are thus derivationally independent - either one can
be constructed before the other, or their construction can even be interleaved. Kobele et al. [2007]
explicitly proves that the trees representing the convergent derivations in minimalist grammars are
formally simpler than the trees they are the derivations of; the former are regular, while the latter are
not. Using tools from automata theory, they show that in addition the map between the derivation
trees and derived trees is regular as well, revealing a fundamental symmetry in human language -
the set of phonotactically well-formed words of languages seem to be regular, and the maps between
underlying forms and surface forms seem to be regular as well. This result was anticipated in Michaelis
[2001], and the general idea of decomposing minimalist grammars into a regular set of underlying
structures together with a uniform regular mapping realizing them as surface structures was worked out
by Uwe Mönnich and his colleagues [Michaelis et al., 2001], though without the underlying structures
corresponding to derivations.
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This ability to move between derivational and representational perspectives on structure allows us
to eliminate the tension between recapitulative and interactionist perspectives on cyclicity. This will be
taken up in 2.2.

1.1. Project-related publications

1.1.1. Articles published by outlets with scientific quality assurance, book publications, and
works accepted for publication but not yet published

1. J. Heinz, G. M. Kobele, and J. Riggle. Evaluating the complexity of Optimality Theory. Linguistic
Inquiry, 40(2):277–288, 2009.

2. G. M. Kobele. Minimalist tree languages are closed under intersection with recognizable tree
languages. In S. Pogodalla and J.-P. Prost, editors, LACL 2011, volume 6736 of Lecture Notes in
Artificial Intelligence, pages 129–144, 2011.

3. G. M. Kobele and S. Salvati. The IO and OI hierarchies revisited. Information and Computation,
243:205–221, 2015.

4. A. Clark, M. Kanazawa, G. M. Kobele, and R. Yoshinaka. Distributional learning of some nonlinear
tree grammars. Fundamentica Informaticae, 146(4):339–377, 2016.

5. G. M. Kobele. Without remnant movement, MGs are context-free. In C. Ebert, G. Jäger, and
J. Michaelis, editors, MOL 10-11, volume 6149 of Lecture Notes in Computer Science, pages
160–173. Springer, 2010.

6. G. M. Kobele and J. Michaelis. Disentangling notions of specifier impenetrability: Late adjunction,
islands, and expressive power. In M. Kanazawa, A. Kornai, M. Kracht, and H. Seki, editors, The
Mathematics of Language, volume 6878 of Lecture Notes in Computer Science, pages 126–142.
Springer, 2011.

7. G. M. Kobele. Formalizing mirror theory. Grammars, 5(3):177–221, 2002.

8. G. M. Kobele. Idioms and extended transducers. In Proceedings of the Eleventh International
Workshop on Tree Adjoining Grammars and Related Frameworks (TAG+11), pages 153–161,
2012.

9. G. M. Kobele. Features moving madly: A formal perspective on feature percolation in the mini-
malist program. Research on Language and Computation, 3(4):391–410, 2005.

1.1.2. Other publications, both peer-reviewed and non-peer-reviewed

10. G. M. Kobele, C. Retoré, and S. Salvati. An automata theoretic approach to minimalism. In
J. Rogers and S. Kepser, editors, Proceedings of the Workshop Model-Theoretic Syntax at 10;
ESSLLI ’07, 2007.

1.1.3. Patents

not applicable

2. Objectives and work programme

2.1. Anticipated total duration of the project

48 months
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2.2. Objectives

In the early days of the transformational cycle in phonology [Chomsky and Halle, 1968], phonological
grammars operated on bracketed strings from the inside out. These bracketed strings were (obtained
from) the results of the syntactic structure building process. I will here present a reformulation of the
transformational cycle in Chomsky and Halle [1968] in terms of trees. This will facilitate a deeper un-
derstanding of the cycle, that will be useful in order to frame the questions under investigation. Figure
3 shows the general format of cyclic phonological interpretation over trees, and figure 2 gives a side-
by-side presentation of the bracketed string notation and tree notation. In figure 3, the phonological

[N [A black ] [N board ] ]

N

A

black

N

board
StressMonosyllable

[N bláck bóard ]
N

bláck bóard
CompoundRule

bláck bòard bláck bòard

Figure 2: The transformational cycle in phonology: a comparison of notations

INTERP(
X

t1 t2
) = APPLYRULESX(INTERP(t1) ⊕ INTERP(t2))

Figure 3: The transformational cycle in phonology: over trees

interpretation of a structure [X t1 t2] involves first interpreting the immediate subparts, combining them
into a single string (represented with the symbol ⊕), and then applying the ordered set of rules appropri-
ate to the bracket type X to this string (representend with the symbol APPLYRULESX). ’Bracket erasure’
falls out from the recursive bottom up evaluation of phonological interpretation. (Brackets are used in
the string representation to represent parent-child relations in the tree representation.) The scheme
in figure 3 is a particular presentation of the formal notion of a homomorphic interpretation scheme,
popularized by Montague [1974] for semantic interpretation. A homomorphic interpretation scheme
maps a tree to a domain of interpretation in the way shown in figure 4. The transformational cycle can

 X

t1 t2


 = hX([[t1]] , [[t2]])

Figure 4: Homomorphic interpretation

be brought into the same format as homomorphic interpretation by setting the operation particular to
a syntactic node X to be hX = λx, y.APPLYRULESX(x ⊕ y). Similarly, any homomorphic interpretation
scheme can be brought into the format of the transformational cycle by taking the generic combining
operation to be the pairing operation: m ⊕ n = 〈m, n〉. These formal translations violate the spirit of the
transformational cycle, which is that the operation particular to the syntactic node X (APPLYRULESX)
should always be a unary operation, and the daughters of the syntactic node are combined in a fully
generic way (i.e. a way not dependent on the identity of the node X ) as an object of the same kind -
strings should be combined to form strings, trees as trees, etc.

Given this intended restriction, semantic interpretation (a là Heim and Kratzer [1998]) should be
brought into the rubic of the transformational cycle in the following way: the generic operations com-
bining the interpretation of sisters are the type driven composition rules of function application and
predicate modification, and the node-specific operation is the identity function. Settings in which prag-
matic aspects of the utterance (such as scalar implicatures) are to be computed recursively in the
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syntactic structure (as proposed by Chierchia [2006]) can be accomodated by assigining this operation
of pragmatic computation to the function APPLYRULESX.

The current presentation of the transformational cycle is intended to illustrate that the cycle and ho-
momorphic (compositional) interpretation are closely related: the cycle is fundamentally a perspective
on interface interpretation. There are two foundational questions which emanate from this:

1. the nature of cyclic optimization

2. the proper formulation of cycle in syntax

Cyclic optimization is just cyclic interpretation where the operation APPLYRULESX involves optimiza-
tion. Consider a Kiparsky style version of Stratal OT [Kiparsky, 2000], with three OT grammars cor-
responding to the stem, word, and phrase level. Here we have a single structure building operation,
namely, adding an affix. After adding a stem level affix, we apply the stem level grammar, after applying
all word level affixes we apply the word level grammar, and finally after constructing the final utterance
the phrase level grammar applies. In accord with the terminology in the main proposal, we might say
that Stratal OT is strictly iterative at the stem level, but works in batch mode at the word level. Shifting
to a more representational perspective, a word we might wish to interpret phonologically will have the
structure shown on the left in figure 5. In this example, there are two stem level affixes (numbered 1 and

phrase

wordEnd

word

word

word

stemEnd

stem

stem

root aff1

aff2

aff3

aff4

aff5

phrase→ wordEnd
wordEnd→ word

word→ word aff
word→ stemEnd aff

stemEnd→ stem
stem→ stem aff
stem→ root aff

Figure 5: The structure of words implicit in Stratal OT

2), and three word level affixes (three through five). The tree has three unary branches, marking the
shift between levels. The operation APPLYRULESstem is the stem level OT grammar. This implements
the idea that the stem level grammar applies after the addition of each stem level affix. As nothing
special happens at the end of the stem domain, the operation APPLYRULESstemEnd is the identity func-
tion. This situation is reversed in the word domain. Here, nothing happens as each word level affix is
added, and so the operation APPLYRULESword is the identity function. The action in the word domain
comes after the word level affixes have been added. To implement this, we have created the node wor-
dEnd, and interpret the operation APPLYRULESwordEnd as the word level grammar. Finally, the operation
APPLYRULESphrase is the phrase level grammar. We see that various degrees of internal iterativity are
reflected in whether and which nodes are interpreted with the identity function. The fact that Stratal OT
is layered, i.e. that the stem level is beneath the word level which is in turn beneath the phrase level,
is reconstructed representationally as a (regular) constraint on the possible input structures; they must
be the parse trees of the context free grammar on the right in figure 5. Layering is thus seen to refer to
whether the structures underlying possible inputs are restricted in some way (i.e. whether they have a
non-trivial underlying grammar) or not.

The formal power of cyclic optimization in this sense and cyclic (ordered rule) interpretation coincide
to the extent that optimality theory and ordered rewrite rules can be approximated with finite state means
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[Frank and Satta, 1998, Kaplan and Kay, 1994]; (finite state) cyclic interpretation, whether optimizing
or not, involves interpreting trees homomorphically where internal nodes are interpreted as finite state
transductions. This is actually a two-step process, whereby an input tree is mapped homomorphically to
an output tree, and then this output tree is evaluated to a string, by interpreting its internal nodes as finite
state transductions. Nevertheless, even restricting the operations to finite state transductions does not
mean that the formal power of cyclic interpretation is so restricted. There are two boundary cases that
illustrate this point. Let us ignore the finite state transductions applying at each node (by restricting them
to compute the identity function). Then cyclic interpretation reduces to tree-to-string homomorphisms,
which are known to map the regular tree languages to the context-free string languages [Comon et al.,
2002]. Even relaxing this onerous restriction on finite state transductions just a little bit, allowing them to
compute strictly 3-local transductions [Chandlee and Heinz, 2018], enables simulating turing machine
computations: we introduce a special set of alphabet symbols q0, q1, . . . which represent the position of
the machine head and its internal state. Leftward (resp. rightward) moves of the machine on the tape
are effected by SL-2 transductions of the form aqi 7→ q ja (resp. qia 7→ aq j). (To allow the machine
access to its infinite tape, we can add a new symbol, B, representing a blank square, assume that the
end of the string is marked with the special symbol #. Then moving rightward past the (current) end of
the string is effected with a 2-SL transduction qi# 7→ Bq j#.) Rewritings are similarly SL-2 transductions
of the form qia 7→ q jb. (Deletions are the special case where b is empty.) This allows us to interpret
unary branching trees as descriptions of turing machine computations. The successful turing machine
computations will be those in which the head is at the beginning of the word, in a final state. This can
be detected by a 2-(O)SL finite state transduction, which erases the head symbol if it is indeed in a final
state at the beginning of the word, and leaves everything else untouched, or erases everything, if the
head symbol is either not at the beginning of the word or it is not in a final state. We can thus use cyclic
interpretation to simulate arbitrary turing machine computations, even with a regular, unary branching
tree language as input. (Peters and Ritchie [1973] show the same is true in the more specialized setting
of aspects-style transformational syntax.) As turing machines have universal computing power, any
grammar formalism that is equivalent to them in power is unable to discriminate between language-like
patterns and non-language-like ones.

While it turns out that cyclic optimization has the same formal properties as cyclic interpretation in
the finite state setting, the question of how to conceptualize the cycle in syntax is not as straightfor-
ward - the previous discussion revealed that cyclic interpretation pertains fundamentally to interfaces,
whereas the syntax is a generative module: syntax constructs structures, while cyclic interpretation is
about deconstructing structures. The cycle in syntax was formulated at a time when syntax was an in-
terpretative system: deep structures were given as inputs, and were interpreted (using transformations)
as surface structures.1 Unlike the case in phonology or semantics, here the inputs and outputs of cyclic
interpretation were objects of the same kind: trees. This somewhat obfuscates the interpretative char-
acter of transformational syntax, which is depicted in figure 6. Historically, the diverse transformations

INTERP(
X

t1 t2
) = APPLYRULESX(

•

INTERP(t1) INTERP(t2)
)

where

APPLYRULESX = change • to X and
{

apply rules if X is cyclic
nothing else otherwise

Figure 6: The transformational cycle in syntax

of transformational grammar were replaced by the single operation of movement, and the bottom-up
interpretative cycle operating over fully formed input trees was reformulated to be applied incrementally
during the construction process of these trees (which can be rationally reconstructed using a technique
called deforestation [Wadler, 1990]). Interleaving the transformational cycle (at nodes C and D instead
of the now defunct S and NP) with a tree construction process based on external merge, we end up
with something very much like the system of On phases [Chomsky, 2008], with feature transfer occuring
once C (or D) is merged so as to provide the conditioning contexts for movement (internal merge). The

1This is true regardless of whether the locus of semantic interpretation is deep structure (as in generative semantics) or a
transformationally obtained interpretation thereof (as in mainstream transformational syntax).
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original formulation of minimalism [Chomsky, 1995] emerges from a transformational grammar where
every node is cyclic - which means that movement operations (i.e. transformations) are (able to be)
performed after each (external) merge step. Cyclic optimization in the syntax would be instantiated by,
for example, using optimality theory at each phasal node [Müller, 2000, Fanselow and Čavar, 2001] to
select the optimal way of applying movements.

This is quite different from the approach in Heck and Müller [2013], where what is being optimized
is the choice of operation to perform at each derivational step. Here structure building competes with
transformations (agreement and movement), with the operation allowed to be performed being the one
whose application results in the most optimal structure. In apparent contrast to the cyclic interpretation
approaches above, in this context the ’deep structure’ input (or its dynamic unfolding as a construction
process) seems to be lacking, as this construction process itself is the target of the optimization. There
is an input here however: it takes the form of a workspace (or rather, a lexical subarry), which is at
its core a specification of which lexical items should be externally merged with which others. We are
thus given as input a ’merge-tree’, corresponding again to deep structure, and must determine where in
this tree movements and agreement may apply. As an example, the workspace for the sentence every
sheep will bleat, divided up into sub-arrays at phasal nodes C, v, and D can be represented as follows:

{C will,

v−array︷                            ︸︸                            ︷
{v bleat, {d every, sheep}︸               ︷︷               ︸

D−array

}}

︸                                         ︷︷                                         ︸
C−array

The three sub-arrays include the D-array containing every and sheep, the v-array containing bleat and
the D-array, and the C-array containing will and the v-array. When constructing a derivation according
to a workspace like the above, one must essentially work from the inside out, applying the grammatical
operations to the objects contained in the sub-arrays, until they have been exhausted. Once they have
been exhausted, the containing brackets are erased, the derivation continues with the next sub-array.
This workspace structure can be given as a tree, as shown in figure 7.

merge

will merge

bleat merge

every sheep

Figure 7: A lexical subarray for "every sheep will bleat", shown as a tree

Turning now to iterative optimization, as exemplified by harmonic serialism (over strings), there are
two difficulties in recasting it in terms of cyclic interpretation. First, and foremost is the fact that there
appears to be nothing to interpret, cyclicly or otherwise: the input to a harmonically serialising grammar
is a string (there is no structure building taking place). Secondly, there is no fixed stopping point deter-
mined by the input: when cyclically interpreting a structure, you stop once the structure is interpreted.
But when harmonically serializing a string, you stop once you reach a fixed point (if ever). The first point
is dealt with by assuming that there is in fact (invisible) structure in the input. This structure is trivial,
i.e. non-branching, and each node in the structure corresponds to one step of optimization. Thus itera-
tivity is just a simple kind of cyclicity (where the structure is unary branching), but where the underlying
structure is not given, and must be inferred. The indeterminacy of the underlying structure relates to
the unknown number of cycles of optimization that should be undergone - this is the representational
analogue of Hao’s transitive closure computation. The filtering step, whereby only those outputs are
kept which are fixed points, can be achieved by the addition of a single root node, which is interpreted
as Hao’s filter. Figure 8 shows some of the underlying structures for dog which harmonic serialism must
cyclically interpret. The nodes labeled cyc are each interpreted as a single optimization cycle, and the
node labeled fix is interpreted as a filter which accepts only those forms which are optimal.
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fix

cyc

dog

fix

dog

fix

cyc

cyc

cyc

dog

Figure 8: Some underlying structures to be harmonically optimized

2.3. Work programme including proposed research methods

The primary goal of this project is to understand the mechanism of cyclic optimization from a computa-
tional perspective. The fundamental computational problem here lies in the cyclic aspect thereof. We
have two distinct settings for cyclic optimization:

1. the number of cycles is unknown in advance: there is a generative process (Harmonic serialism),
which optimises until a fixed point is reached, if ever

2. the number of cycles is known in advance: there is an interpretative process which composition-
ally interprets a structure

Both of these settings will be targets of study.

2.3.1. Harmonic serialism

Harmonic Serialism over Strings (HSS) The fundamental difficulty posed by harmonic serialism is
the iteration of optimization, ending only if a fixed point is reached. Hao [2017] has ingeniously
imported a technique from software verification which allows him to show that arbitrarily many cy-
cles of optimization can be simulated by a single finite state transducer. Because the requirement
that inputs and outputs be of equal length is not linguistically motivated or plausible, Hao’s results
need to be improved upon. One immediate goal of the project is to do just this. It seems plausible
that there be an upper bound on the size increase that a string-based harmonic serialist grammar
can compute: after a certain point, if epenthesis is an optimal output in a cycle, the outputs of
the grammar will never converge. Establishing this will be a first step in bringing Hao’s result in
line with linguistic assumptions; we will be able to uniformly map an input word to a single string
with a particular, maximal, number of silent segments. This approach to bounding the number of
possible cycles in the length of the input was advocated for by Peters and Ritchie [1973], which
demonstrated that different kinds of bounds on possible cycles restricted the generative capacity
of transformational syntax.

Harmonic Serialism over Structures (HST) As many proposals about the representation of phono-
logical elements view them as structured objects (e.g. autosegmental theory, government phonol-
ogy, etc), extending Hao’s work so as to apply over trees (and more generally graphs) is a natural
further step. However, it is non-obvious just what reasonable minimal changes should be allowed
for generating candidates, and therefore also the appropriate notion of ’sameness of structure’
which in the domain of strings was realized as length. The problem here is not technical, but
rather empirical; there have not been enough linguistic studies using harmonic serialism over
trees to abduce this information from.

2.3.2. Cyclic Interpretation

Generative Capacity (GC) As sketched previously, the generative capacity of cyclic interpretation is
unrestricted, as even with very restricted operations we can simulate turing machine computa-
tions. The construction given in that section, while formally correct, is linguistically unsatisfying:
it relies on a number of linguistically questionable moves, such as extending our vocabulary with
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abstract symbols, repeatedly altering the outputs of previous cycles, having one syntax node
per turing machine rule, and performing arbitrary, non-phonologically motivated symbol manip-
ulations. Additionally, while the transductions implementing the turing machine transitions are
formally quite simple, it is not immediately clear how to implement them in terms of OT grammars
(i.e. optimization). The question here is to determine the actual expressivity of cyclic interpre-
tation as it is used by linguists, as well as whether there is a way to reduce the expressivity of
cyclic interpretation so as to obtain a better empirical fit with the typological data. Some of these
linguistically unsatisfying moves can be resolved in a linguistically satisfying way without affecting
the argument: instead of having one syntactic node per turing machine rule, we can compose the
turing machine rules into a single finite state machine, and apply this machine at each node. This
will no longer be SL-2, however. Instead of introducing new vocabulary symbols, we can use our
original vocabulary to encode arbitrary information. (So aaa might be interpreted as state q7, and
aab as the phonological letter c.) However this will no longer be SL-2 either, and the problem of
the linguistic unnaturalness of the manipulations will be exacerbated. On the other hand, some
of the linguistically unsatisfying moves seem more fundamental. The strict cycle condition limits
the manipulation of material created during a previous cycle. This would completely block the
construction in the previous section, which relies on being able to modify previous cycle material
ad libitum. Formalizing and studying the effects of the strict cycle condition (and its linguistically
attested variants) is a major goal of this task. Similarly, naturality (of a.o. phonological rules)
is a major focus of linguistic theory, and its imposition would seem to block the turing machine
simulation. Another goal is to better understand the role of naturalness in limiting the generative
capacity of cyclic interpretation.

On Phases (OP) In the previous section, Chomsky’s ’On Phases’ system [Chomsky, 2008] was ar-
gued to be the natural modern incarnation of the transformational cycle in syntax. The crucial
mechanism of the ’On Phases’ system is feature transmission, which allows a feature of a higher
head to be checked counter-cyclically by a lower head. The goal of this sub-project is to imple-
ment and study feature transmission in minimalist grammars [Stabler, 1997], a formal framework
for the minimalist program. Although counter-cyclicity is formally not very well understood (Ko-
bele and Michaelis [2011] is one of the only studies investigating the impact of counter-cyclicity
on the generative capacity of minimalist grammars), the kind of counter-cyclicity involved in fea-
ture transmission is very local (one might analogize it to strict locality in phonology), and seems
unlikely to change the generative capacity in a substantive way. I suspect that the formalism of
’On phases’ and the original Stabler formalism will be intertranslatable into one another, in the
sense that there will be a direct translation mapping derivation trees of the one into those of the
other.

Local Optimization (LO) The system of Heck & Müller [Heck and Müller, 2013] instantiates cyclic
optimization over derivational steps. As sketched in the previous section, it is a form of cyclic
interpretation (via optimization) where the object cyclically interpreted is something akin to a
workspace.2 The output of cyclic interpretation is a derivation tree, which can be interpreted
(homomorphically) as a derived tree in the usual way. One goal of this sub-project is to formalize
this system as just described. It seems initialy plausible, based on the constraints proposed in
Heck and Müller [2013], that the information about the derived structure relevant to evaluating
constraint violations is already present in what Kobele [2015] calls ’syntactic type’: a fixed, finite
set of information about primarily unchecked features that is efficiently computable on the basis
of the derivation tree. For example, •k t; k is the syntactic type of a finite T’, which contains an
expression which has not yet been assigned case (k). This, if it holds up under more detailed
linguistic investigation, would render unnecessary information about the numeration – in other
words, this would allow us to reformulate Heck & Müller’s systems in a purely algebraic way. The

2This is a familiar conceptual difficulty encountered more generally in OT approaches to syntax: what is the input? As one
usually doesn’t want to compare sentences expressing fundamentally different meanings, the input is taken to specify at
a minimum the basic predicate argument relations that the sentences to be compared should express. In (non-generative
semantic) transformational grammar, this was the level of DS, which in minimalism is obtained by erasing the movement
nodes from the derivation tree. The lexical sub-array data structure may sometimes also deliver this information, so long
as there are sub-arrays between all arguments of the verb.
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numeration plays a role in Heck & Müller’s system when evaluating (external) merge, as one
needs to make reference to which expressions are available to be merged. Without access to a
numeration, it would seem that there would be infinitely many candidates for merge. However,
if syntactic type is all that is necessary in order to perform constraint evaluation, then we just
need one merge operatation type for each possible syntactic type (of which there are finitely
many [Michaelis, 2001]). Another role of the numeration for Heck & Müller is to enforce a ban
on counter-bleeding; stated without numerations it becomes: if merger of an expression at some
earlier point would have been an optimal choice (i.e. it would have bled other operations), but
was not performed, than this expression cannot be merged later on. This counter-bleeding can
be achieved without numerations by percolating a filter up the derivation tree, banning merging an
expression of a syntactic type which would have won, had it been merged earlier. A second goal
of this sub-project is to determine to what extent Heck & Müller’s system can be reformulated in
this way, and more generally, what sort of properties this reformulation is contingent on.

Parsing (P) The goal of interest in this sub-project is to better understand the nature of cyclic optimiza-
tion from the perspective of language use, in particular, as regards to how parsing according to
a cyclicly optimizing grammar might be achieved. In addition, the lower-level vocabulary of pars-
ing makes available many more subtle distinctions between expressions on the basis of which
observed differences in linguistic behaviour can be explained. For example, in the now classic
approach of Chomsky and Miller [Miller and Chomsky, 1963], it is observed that the transient
memory load of a parser (qua push-down automaton) as it processes center vs right embedded
sentences corresponds to increased processing difficulty (see Resnik [1992] for a more system-
atic version of this idea).

There is often a tension in the parsing literature (in computer science) between the succinctness
of the grammar formalism, and the complexity of parsing. The efficiency of parsing is often in-
creased by doing as much work as possible in advance of any input. This involves putting the
grammatically relevant information into as efficiently accessible a form as possible. The more
succinct a grammar formalism is, however, the more work needs to be done to unpack the infor-
mation it contains. Returning to our topic, even if it turns out that cyclicly optimizing grammars are
efficiently parsable, this might only be with respect to a different representation. Accordingly, we
will investigate both parsing cyclicly optimizing grammars directly, and via alternative representa-
tions. We will also study whether cyclicly optimizing grammars provide a good fit to behavioural
data via complexity metrics.

2.3.3. Timeline

The first PhD student will focus on formalizing and comparing the ’on phases’ and the ’Heck & Müller’
extensions of minimalism, in the context of minimalist grammars [Stabler, 1997]. The overall goal of
the dissertation is to understand cyclic interpretation in modern syntax, and to evaluate these (and
perhaps alternatives) with respect to one another in terms of empirical coverage, generative capacity,
parsing complexity, and on complexity metrics linking grammars to empirically determined processing
difficulties.

The second PhD student will focus on harmonic serialism (the generative perspective on cyclic opti-
mization), first over strings, then over tree-like structures. After the formal development, parsing will be
investigated. Finally, these tools will be brought to bear on the particular analyses developed in project
7.1.

The PI will contribute to research on all topics, and will be primarily concerned with the general
architecture of cyclic interpretation.

PhD Student 1 PhD Student 2 Principal Investigator
2021 LO HSS LO, HSS, GC
2022 LO HST LO, HST, GC
2023 OP P(HS) OP, P, GC
2024 P(LO,OP) HS P, GC
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2.4. Data handling

The source code for all programs to be written will be made publicly available.

2.5. Other information : Cooperation within the research unit

This project investigates the nature of cyclic optimization; its relation to other formalisms, which features
of cyclic optimization influence its generative capacity, etc. Accordingly, the present project contributes
to all other projects utilizing cyclic optimization in being able to inform theoretical decisions based on
alternative equivalent representations and on which theoretical proposals are more or less restrictive.
On the other hand, all projects utilizing cyclic optimization contribute directly to this one in that they offer
linguistically motivated proposals to guide formalization and analysis. Many projects push up against
the limits of cyclicity: the cycle as described here is a particular kind of homomorphic interpretation,
and homomorphic interpretation requires all information to be local: the interpretation of a complex is
a function of its mode of combination together with the interpretations of its immediate parts. In some
cases, however, seemingly non-local information must be taken into account in determining the results
of a particular cycle. The standard ’trick’ to circumvent non-locality (in the computer science literature)
is to enrich the representations so as to encode the long-distance information locally. In this case,
the important questions (from a computational perspective) revolve around the nature and amount of
information which must be maintained and passed around.

Mor®Mor A fundamental goal of one of the graduate students working on the present project is the
formal development of harmonic serialism from simple strings to richer structures, or in other words to
develop a formal foundation for harmonic serialism over structures richer than strings. The Mor®Mor
project promises a case study in exactly this, and there will be close cooperation between these two
projects.
Mor®Phon Recent computational investigation into the nature of tonal phenomena [Jardine, 2016]
suggests that these are different in kind than other phonological phenomena (e.g. unbounded tone
plateauing and the like are quite common in the tonal domain, but vanishingly infrequent in other phono-
logical domains, like stress or harmony). This might suggest, following the logic in Heinz and Idsardi
[2013], that tone may be a linguistic domain in its own right. Regardless of the ultimate validity of this
suggestion, we would like our theories of linguistic phenomena to explain their typological variability,
both within and across domains. An important interim goal is to be able to characterize the range of
possible variation within a theory. This might take the form of constraints on representations (perhaps
an autosegmental-like representation for tone allows for a reduction of complexity of the needed oper-
ations to derive unbounded tone plateauing vs a comparable vowel harmony process over sequences
of phonemes), or of constraints on possible operations. This project on morphological strata of tone
investigates both rich representational questions, as well as questions of how cyclic optimization should
be structured so as to best account for the data.
Sem®Phon The project on semantic and phonological correlates of affix order utilizes stratal OT,
thus providing an empirical case study into the nature of strata and cyclic optimization which is useful in
a particular domain (which is relevant for identifying possible substantive constraints on cyclic systems
which rein in their generative capacity while still being able to describe the data). Perhaps more inter-
esting, it investigates cases of non-locality (discontinuous dependencies), which would seem to pose a
problem for the cycle. The important question here is to determine the nature and limits of discontinuity,
and thus of the information which must be percolated throughout the cycle.
Syn®Syn The project on syntactic repairs has at least two points of contact with the present pro-
posal. First, one approach to repair to be investigated will be the ’local optimization’ approach to
minimalism which is the subject of one of the graduate student sub-projects. Second, instances of non-
local information transmission occur (at least in the form of resumptive pronominalization), the solutions
to which are directly relevant to the question of how much information must be percolated through the
cycle. In addition, though less directly related to the present project’s goals, it may prove useful to
couch some of the investigations into repairs in the minimalist program in the context of a formalization
thereof, which is both a research interest of mine and is as well an object of study in the afore mentioned
graduate project.
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Syn®Phon One point of particular interest about the project on prosodic dislocation is that it is at its
outset confronted with difficulties regarding non-locality for cyclicity. This manifests itself in particular in
that the B conjunct of a conjunction A & B might be a very large expression, which has been subject
to perhaps multiple cycles, and yet its edge may remain permeable for the conjunctive marker. Another
interesting aspect of this project it that it involves what we might call a cyclic pipeline: syntax is inter-
preted (cyclicly) as a prosodic structure, which itself contains pieces (words comprised of morphemes)
which must be interpreted cyclicly as phonological sequences. The question thus is made very salient:
how are multiple cyclic interpretive processes to interact? One possibility is that these are in a straight-
forward feeding relationship, whereby syntax is cyclically interpreting words as phonological sequences
in a bottom up way, and larger constituents containing these are then cyclically interpreted as prosodic
structures (which themselves might be cyclicly interpreted as articulatory scores). Another is that the
constraints of each cyclic system are combined into a single system. This permits bidirectional infor-
mational interactions between the domains, but runs into the problem of opacity - the representations
some constraints are stated over (the prosodic structure, say) is no longer present in the output.
Syn®Sem This project is focussed on non-local interactions over perhaps multiple cycles, in a more
semantic domain. Of particular interest is the distinction between ’top-down’ and ’bottom-up’ effects,
which at least in its nomenclature suggests that an attempt to move the purview of the top-down effects
into the performance systems (where top-down parsing is sometimes called ’predictive parsing’) might
be of some value. Both top-down and bottom-up effects are as described in the project non-local, and
thus pose challenges for cyclicity. They are conjectured to behave quite differently from one another,
which is the beginning of a taxonomy of non-local effects.
Syn®Mor The project on morphosyntactic number plans to compare harmonic serialist and stratal
OT analysis to one another in the domain of under- and overexponence. Moreover, this is done with
the backdrop of a broadly minimalist syntax. This project thus makes use of the formal theories the
graduate students assigned to this project will be developing, which provides for useful checks and
balances on the formal side.

2.6. Descriptions of proposed investigations involving experiments on humans or human
materials

not applicable

2.7. Information on scientific and financial involvement of international cooperation partners

not applicable
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