
Cyclicity in Minimalist Syntax

Gregory M. Kobele

Abstract
What is the relationship between the extension condition and the cycle in
e.g. phonology? I explore the analytical landscape and conclude that we must
distinguish derivational and derived structure.

1. Introduction

The cycle, and references to cyclicity, appears throughout linguistics. Many
terms in linguistics do double duty both as a name for a mechanism or analy-
sis and as a label for a set of facts that that mechanism is intended to explain.
As noted by Freidin (1978, 1999), cyclicity was introduced in transforma-
tional grammars to restrict the power of the model. Certain kinds of ungram-
matical constructions (superraising, relativized minimality) could be blocked
by means of this mechanism. By a façon de parler any mechanism which
blocks these constructions could be termed cyclic. One might be forgiven,
however, for wondering whether this situation is the reflection of a deep
truth about language, as opposed to a historical accident. If this were the
case, we might expect that the phenomena associated with cyclicity could
and should be given a uniform formal treatment. In this short paper I will
investigate whether cyclicity as currently implemented in minimalist syntax
can be unified with cyclicity as implemented in other domains, and if so,
how. My answer will be that cyclicity is exclusively about the mapping from
one structure to another, and thus that there is no meaningful unification of
syntactic cyclicity with interface cyclicity. However, I will argue that the pop-
ular conception of syntactic cyclicity is more properly viewed as an interface
condition.

Cyclicity, 73–82
Mariia Privizentseva, Felicitas Andermann & Gereon Müller (eds.)
LINGUISTISCHE ARBEITS BERICHTE 95, Universität Leipzig 2023



74 Gregory M. Kobele

2. Cyclicity in Syntax and Elsewhere

Cyclicity is used in the domain of (morpho-)phonology to describe the inter-
action between modules: phonological rules apply to the intermediate out-
puts of bottom-up morphological structure building. As an equation:

π([m -AFF]) = PHON(π(m), -AFF)

Here, π(·) is the (phonological) interpretation of a morphological structure.
The operation PHON(·, ·) is responsible for attaching the right form of the
affix to the right spot in π(m), and applying the relevant phonological rules
to the result. This allows for both phonological rules to depend on morpho-
logical structure, as well as limitations on this dependence to be stated.

Looking for an analogue of this in syntax, we would expect cyclicity to
be a property of the interfaces: semantic terms (for example) should be
computed incrementally during the derivation. However, Chomsky (1995:
chap.3) asserts that requiring that all structure building target the root of the
tree (with the implicit assumption that it target only the root of the tree) is
the proper way to bring the concept of (strict) cyclicity into modern syntac-
tic theory. Demanding that syntactic structure building target the root—the
Extension Condition (EC)—seems a completely different kind of thing from
allowing rules from one domain to depend on rules from another domain.

When cyclicity was first applied to syntactic theory, the formal model of
syntax was very different. By Aspects, Chomsky (1965) had adopted the idea
of a context-free base component. A grammar consisted of a context-free
base, together with a (sometimes ordered) set of transformational rules. As
a given transformational rule could apply in principle to any number of parts
of a given input, some strategy was necessary to adjudicate between possi-
bilities. Simple and natural rules seemed to require a cyclic (or inside-out)
mode of scheduling: rules applied to a subtree before applying to anything
containing it. This statement could perhaps be interpreted to allow a rule to
apply to a subtree by actually applying to a proper subpart of this subtree. A
strict reading of this statement would require that the rule apply to the entire
subtree in question. An obvious question was which subtrees rules should
apply to. A very simple proposal (see McCawley 1988: Chapter 6) is that
rules should apply at every subtree. McCawley (1988) observes that this al-
lows for rule ordering to be abandoned: rules apply in a (strict) cyclic manner
whenever their structural descriptions are met. This sounds a lot more like



Cyclicity in Minimalist Syntax 75

what we began with: if you apply as soon as you can, you will (of course) be
targeting the root of the current tree! A more influential proposal has it that
rules are applied only at subtrees with certain syntactic properties (i.e. having
a particular syntactic category). They then needn’t apply to the entire subtree,
but rather to any part of it that properly includes the previous subtree with
that property. This in turn sounds very similar to ideas about feature inher-
itance (Chomsky 2008), which necessitates mild abrogations of the EC. It
would seem that the identification of cyclicity in minimalist syntax with the
EC (or relaxations of it) is faithful to the original conception of cyclicity in
transformational grammar.

But what of the other notion of cyclicity, that which seemed to point to-
wards the interfaces? How do these notions of cyclicity relate to one another,
aside from onomastically? We will see that the original notion of cyclicity
in transformational grammar, properly understood, was in fact the same as
the interface notion. However, this raises issues with the glib identification
of cyclicity in minimalist syntax with the EC.

3. Cyclicity in Transformational Grammar

The popular conception of transformational grammar is that a derivation pro-
ceeded by first obtaining a base structure (a tree), and then applying transfor-
mations to it in a cyclic manner. Transformations could in principle interact
with (i.e. feed, bleed, etc) one another, but these could not retroactively af-
fect the base structure—if, working bottom up, transformations change what
was once a VP into an NP, this doesn’t change the fact that this NP née VP
was combined with an NP on its left to make an S in the base component.
In other words, syntactic selection was purely a matter of the context-free
base component, whereas transformations manipulated the God-given base
structure.

Cyclic rule application over a tree is naturally stated in terms of interleav-
ing the tree construction process with the rule application process. For this
purpose, it is more useful to view context-free grammar productions in a
bottom-up way; thus the production S → NP V P is viewed not as rewriting
an S into NP and V P, but rather, as combining a pre-existing NP and V P
together to obtain an S. Because the bottom-up interpretation of a produc-
tion rule is less familiar, I will use a different notation so as to remind us



76 Gregory M. Kobele

that productions are to be so interpreted: S ⊢ NP V P. Thinking of rules in a
bottom-up way, we now actually have a particular NP (say u) and a particular
V P (say v) that we are combining to produce an S. This S is constructed out
of the NP u and the V P v by introducing a new node labeled S as the parent
of these two (in that order): [S u v]. This information is implicit in the pro-
duction rule notation, but we can make it explicit in the bottom-up notation
by writing the derived object in parentheses after the category name: X(w),
which can be read as ’w is an object of category X’. Our rule now looks as
follows: S([S u v]) ⊢ NP(u) V P(v).

As we want to treat categorial selection differently from the objects we
construct (selection cannot be changed by transformational rules, the object
we build can), it is useful to have a notation of this sort that distinguishes
them. Curry (1961) calls the aspect of grammar dealing with categorial se-
lection tectogrammar, and the aspect dealing with the objects constructed
phenogrammar. This same distinction is made in Abstract Categorial Gram-
mars (de Groote 2001: (ACGs)), where it is easier to see how this notion
applies in general to interfaces: the tectogrammatical structure is the input
to an interface, and the phenogrammatical structure is its output. The ACG
perspective views the rule S([S u v]) ⊢ NP(u) V P(v) as an operator ρ of type
NP →V P → S, which is interpreted as a function JρK = λu,v. [S u v] of type
tree → tree → tree. A well-typed term M of atomic type can be thought of
as representing a derivation of the tree JMK, where JM(N)K = JMK(JNK).

Let us now write tr for the process of applying an ordered sequence of
transformational rules to a structure. Then, as we surely want to apply trans-
formations at S nodes, we can add this information to our base rule as fol-
lows: S(tr([S u v])) ⊢ NP(u) V P(v). In other words, if we have an NP u
and a VP v, we can construct an S from them by applying a round of trans-
formational rules to the object [S u v]. Note that the property of being an S
(say) is different from being an object whose root is labeled with the symbol
S. Being an S means that you are something that can be used by a rule that
has S on its right hand side. What is important here is that we see that the
transformational component (the symbol tr) lies squarely in the phenogram-
matical component. This shows that the transformational notion of cyclicity
is in fact the same as the interface notion of cyclicity familiar in the morpho-
phonological world: it’s just that the ‘interface’ here is the map between the
base structure and the surface structure.



Cyclicity in Minimalist Syntax 77

4. Cyclicity in Minimalism

One of the changes that occured on the road from transformational grammar
to minimalism was the syntactification of transformations. In other words,
transformations were subsumed by the operations of the base—in particular
by the single binary operation MERGE.1 The effects of MERGE are com-
monly thought of in terms of adding a new node which is an immediate
parent of both of its arguments: JMERGE(α,β )K = [JαK Jβ K].2

In terms of the derivation, MERGE as defined above applies directly to its
two arguments. This builds in the extension condition, at least derivationally
(i.e. syntactically). As we wish to see how extension relates to cyclicity, we
would like to avoid building extension into the system. In linguistic terms,
we incorporate timing into the definition of MERGE. This requires us to
permit MERGE to apply to subparts of expressions. In order to make this
precise, MERGE must take four arguments—MERGE(A,a,B,b)—where two
arguments (lower case a and b) are the two terms which will be merged
together, and the other two arguments (upper case A and B) indicate at what
point in the derivation this is to happen. We intend a to be a subterm of
A, and b to be a subterm of B.3 This is easiest to visualize via a picture,
as shown in figure 1. In the figure, the left and right subtrees are the A

Merge

Figure 1: MERGE(A,a,B,b)

and B arguments respectively. The dotted subtrees of each are the a and b

1This is not entirely accurate. The effects of transformations have been distributed across
components of the grammar. Some effects of transformations have been moved to the inter-
faces, for example copy deletion/trace conversion.

2This is canonically written in set notation: JMERGE(α,β )K= {JαK,JβK}. This is of course
just another notation for unordered trees where all daughters of a node are distinct.

3We can enforce this by changing the types of a and b from terms to pointers to nodes:
MERGE : forall (A : Term), Node(A)→ forall (B : Term),Node(B)→ Term.



78 Gregory M. Kobele

arguments respectively. Intuitively, we want to understand MERGE(A,a,B,b)
as saying “merge objects a and b together, but retroactively, after embedding
them in A and B respectively”.

We will say that MERGE is countercyclic in a if A ̸= a, and countercyclic
in b if B ̸= b.4 Being countercyclic in this sense means the same thing as
violating the extension condition (in a particular argument). If A = a and
B = b then we have normal (cyclic) external merge. Internal merge obtains
if A = a and A = B but B ̸= b. That is, internal merge is countercyclic in b.
Note that in both cases there are exactly two distinct arguments: in (cyclic)
external merge these are the A = a and B = b arguments, and in internal
merge these are the A = a = B and the b arguments. Thus in both cases,
merge can be treated as a binary operation. These cases of merge are depicted
in figure 2.

Merge

(a) external

Merge

(b) internal

Figure 2: Canonical merge

Now let A ̸= B. If A ̸= a but B = b then we have countercyclic merge of b
inside of A, what Citko (2005) calls parallel merge and van Riemsdijk (2006)
calls grafting. In the reverse situation (A= a but B ̸= b), we have what Nunes
(2001) calls sideward movement. This is depicted in figure 3.

Crucially, allowing any countercyclicity in MERGE (including the counter-
cyclicity of internal merge) means that the derivations are no longer proper
trees, but rather graphs (multiple dominance structures). If there is a finite
upper bound on the number of possible targets of reentrant arcs in any given
structure, as is enforced by Ed Stabler’s so-called SMC constraint (Stabler

4This terminology is unfortunate, as it sounds like it has something to do with the notion
of cyclicity under discussion. Whether it does is the subject of this paper. This terminology
reflects current linguistic practice, which presupposes the connection.



Cyclicity in Minimalist Syntax 79

Merge

(a) parallel

Merge

(b) sidewards

Figure 3: Non-canonical merge

1997) in the case of internal merge, then these graphs can be encoded as
trees.

4.1. The Extension Condition

As in transformational grammar, we have in minimalism two levels of struc-
ture: 1. the derivation, and 2. the structure so derived.We wish to ask whether
the extension condition holds at which levels.

Here we are confronted with the fact that the EC is stated for trees, rather
than for multi-dominance structures. By their very nature, all derivational
operations satisfy the no tampering condition (NTC)—requiring that the in-
puts to an operation be preserved in the output—and this is often thought of
as being stricter than the EC. On the other hand, we might wish to require
that structure building exclusively target the root. This would then rule out as
violating the EC any sort of reentrancy—in our terms, any merge step coun-
tercyclic in any of its arguments. As alluded to at the end of the previous sec-
tion, reentrancy needn’t be explicitly represented (and thus, can be formally
eliminated) if the targets of reentrancy are uniquely determinable. As an ex-
ample, many constraints on movement proposed in the minimalist program
have a ‘superlative’ flavor—Shortest Move, Attract Closest, Minimal Link
(though consider in this context the notion of equidistance)—which suggest
that the identity of the mover might be uniquely recoverable just from the in-
formation that at a particular point in the derivation a movement took place.
More generally, sidewards movement and parallel merge can be made com-
patible with this restricted derivational EC, so long as the sidewards mover



80 Gregory M. Kobele

and the target of parallel merger respectively can be reconstructed from the
derivational stage at which merge applies.

The main question of interest is thus whether the EC holds of derived
structure, which, as we have seen in the case of transformational grammar,
can be thought of as the phenogrammar (i.e. in terms of interfaces). Viewing
MERGE, as described above, as adding a new node to a graph, which imme-
diately dominates its arguments, the objects it derives satisfy the EC just in
case two of the following statements are true: A = a, B = b and A = B.5 In
other words, this allows for exactly the structure building effects of cyclic
merge and move, as the EC was designed to do. In contrast to our initial situ-
ation, now that derivation and derived structures have been distinguished, we
see that this involves the interleaving of structure building and interpretation.

The difficulty with derived structure is that it is of necessity somewhat
ephemeral—its entire raison d’être is to serve as the input to some other
process, such as linearization. As we change our respresentation of derived
structure, so too changes what might count as conforming to the EC. As a
concrete example, consider the PF-interface, which we suppose is responsi-
ble solely for linearizing the terminals in our derived structure. As shown by
Michaelis (2001) and Harkema (2001) (and intuited by Brosziewski (2003)),
the mapping from derivation to string in Stabler’s Minimalist Grammar for-
malism can be achieved by maintaining a tuple of strings without the need
for derived structure. The EC no longer straightforwardly applicable to such
a representation. However, if we understand the intent of the EC to be that
of limiting changes to already constructed structures (along the lines of the
NTC), then the generalized EC holds of a tuple of strings if only string con-
catenation is used to combine the components of tuples with one another (as
opposed to substitution, or infixation). Splitting a single derived object up
into parts (i.e. a tuple) allows for operations conforming to the generalized
EC to apply which would have fallen afoul of the EC on the original derived
object. For example, tucking-in movement (Richards 1999) satisfies the gen-
eralized EC so long as the sequence of specifiers of a head is split off from

5There are four possibilities, of which the following two have not yet been discussed: 1. A =
B = b ̸= a, and 2. A = a = B = b.The first case is the mirror image of internal merge, where
the second to-be-merged argument of the MERGE operation properly contains the first. One
could potentially think of this in linguistic terms as reprojection. The second case could be
thought of as self-merge.



Cyclicity in Minimalist Syntax 81

this head and its complement—this makes the innermost specifier position
directly accessible without modifying an already built structure.

5. Conclusion

Defining cyclicity uniformly as interleaving structure building with interpre-
tation accounts for what was called the transformational cycle in transforma-
tional grammar. The extension condition in minimalism can also be viewed
in this manner, with the EC regulating the mapping from derivation to derived
structure. However, it is extremely sensitive to representational choices, and
thus appears ad hoc.

The EC can be applied to syntax proper (the derivation), where it requires
that the targets of operations be uniquely determinable from their point of
application. However, this does not have anything to do with cyclicity as a
formal mechanism.

An important aspect of cyclicity as a mechanism is that the objects be-
ing constructed are only semipermeable to subsequent manipulation. The
sensitivity of the EC to representational choices can be understood in this
light—instead of condemning the EC as representation dependent, we use
the kind of manipulation which is possible for already constructed derived
object to infer a representation which allows (just) those to take place under
the EC.

References

Brosziewski, Ulf (2003): Syntactic Derivations: A Nontransformational View. Lin-
guistische Arbeiten, Max Niemeyer Verlag, Tübingen.

Chomsky, Noam (1965): Aspects of the Theory of Syntax. MIT Press, Cambridge,
Massachusetts.

Chomsky, Noam (1995): The Minimalist Program. MIT Press, Cambridge, Mas-
sachusetts.

Chomsky, Noam (2008): On Phases. In: R. Freidin, C. P. Otero and M. L. Zu-
bizarreta, eds, Foundational Issues in Linguistic Theory. MIT Press, Cambridge,
Massachusetts, pp. 133–166.

Citko, Barbara (2005): ‘On the Nature of Merge: External Merge, Internal Merge,
and Parallel Merge’, Linguistic Inquiry 36(4), 475–496.

Curry, Haskell B. (1961): Some Logical Aspects of Grammatical Structure. In: R. O.
Jakobson, ed., Structure of Language and its Mathematical Aspects. Vol. 12 of



82 Gregory M. Kobele

Symposia on Applied Mathematics, American Mathematical Society, Providence,
pp. 56–68.

de Groote, Philippe (2001): Towards Abstract Categorial Grammars. In: Association
for Computational Linguistics, 39th Annual Meeting and 10th Conference of the
European Chapter, Proceedings of the Conference. pp. 148–155.

Epstein, Samuel David and Norbert Hornstein, eds (1999): Working Minimalism.
Number 32 in ‘Current Studies in Linguistics’, MIT Press, Cambridge, Mas-
sachusetts.

Freidin, Robert (1978): ‘Cyclicity and the Theory of Grammar’, Linguistic Inquiry
9(4), 519–549.

Freidin, Robert (1999): Cyclicity and Minimalism. In Epstein and Hornstein (1999),
chapter 5, pp. 95–126.

Harkema, Henk (2001): Parsing Minimalist Languages. PhD thesis, University of
California, Los Angeles.

McCawley, James D. (1988): The Syntactic Phenomena of English. Vol. 1, The
University of Chicago Press.

Michaelis, Jens (2001): On Formal Properties of Minimalist Grammars. PhD thesis,
Universität Potsdam.

Nunes, Jairo (2001): ‘Sideward Movement’, Linguistic Inquiry 32(2), 303–344.
Richards, Norvin (1999): Featural Cyclicity and the Ordering of Multiple Specifiers.

In Epstein and Hornstein (1999), chapter 6, pp. 127–158.
Stabler, Edward P. (1997): Derivational minimalism. In: C. Retoré, ed., Logical

Aspects of Computational Linguistics. Vol. 1328 of Lecture Notes in Computer
Science, Springer-Verlag, Berlin, pp. 68–95.

van Riemsdijk, Henk (2006): Grafts follow from Merge. In: M. Frascarelli, ed.,
Phases of Interpretation. Vol. 91 of Studies in Generative Grammar, Mouton de
Gruyter, pp. 17–44.


	Cyclicity in Minimalist Syntax
	1 Introduction
	2 Cyclicity in Syntax and Elsewhere
	3 Cyclicity in Transformational Grammar
	4 Cyclicity in Minimalism
	4.1 The Extension Condition

	5 Conclusion
	References


